9

Microbiology lab 10 Gram-negative Rods Enterobacteriaceae and *Pseudomonas*

By: Lecturer Shaima'a Al-Salihy

1/2/2018

Learning objectives:

After this lab. You must be able to:

- Describe microscopic morphology and cultural biochemical characteristics of each member in this family.
- List infections caused by each of these members.
- Differentiate each member of this family from each other.
- Discuss principles of biochemical tests of each member in this family.
- Predict enterics causative agents causing clinical cases.

<u>Gram-Negative bacilli</u>

Large group of diverse organisms, they are divided to: &Gram-Negative Rods related to gastrointestinal tract. &Gram-Negative Rods related to respiratory tract. &Gram-Negative Rods related to animal source.

<u>Gram-Negative Rods related to</u> <u>gastrointestinal tract</u> <u>Enterobacteriaceae and Pseudomonas</u>

Enterobacteriaceae is a large family of bacteria commonly referred to as the fermentative, gram negative, enteric bacilli, indicating that they are gram-negative rods which can ferment sugars.
 To differentiate them from non-fermentative , gram-

negative rods such as Pseudomonas.

<u>Clinical Significance of Enterics</u>

- Enterics are ubiquitous in nature, some live in water, soil and sewage and most are present in the intestinal tract of animals and humans as commensal flora; therefore, they are sometimes call "fecal coliforms"
- Based on clinical infections produced, enterics are divided into two categories:
 - True pathogen Salmonella, Shigella, Yersinia sp and some strains of E. coli
 - Opportunistic pathogens normally part of the intestinal flora that may produce infection outside the intestine

Family Enterobacteriaceae

	Genus	No. of species
	Citrobacter	4
Certain <i>E .coli</i> strains	Edwardsiella	4
can be considered	Enterobacter	13
true pathogens	Escherichia	5
True pathogen	Shigella (nonmotile)	4
	Ewingella	1
	Hafnia	2
	Klebsiella (nonmotile)	7
	Klüyvera	2
	Morganella	2
	Proteus	4
	Providencia	5
True pathogen	Salmonella	7 subgroups
	Serratia	10 '
True pathogen	Yersinia (nonmotile)]]

Important features

Gram-negative non spore forming rods.

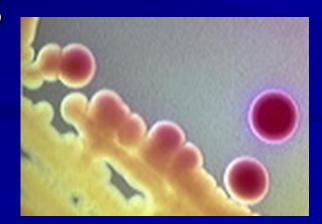
- Most Enterobacteriaceae are motile, with the exception of the common isolates Klebsiella, Shigella, and Yersinia, the motile strains possess peritrichous flagella.
- Any Enterobacteriaceae also possess virulence factors: fimbriae, sex Pilli, capsule, and endotoxin.
- Facultative anaerobes.
- All members ferment glucose
- All members reduce nitrate to nitrite.
- All members are catalase positive and oxidase negative.

Colonial Morphology

Ability to ferment lactose:

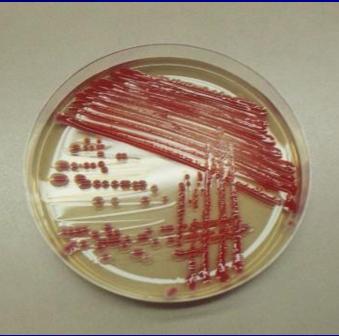
- lactose-fermenting strains *pink-purple colonies* (e.g., Escherichia, Klebsiella, Enterobacter, Citrobacter)
- Non lactose-fermenting strains * colorless colonies* (e.g., Proteus, Salmonella, Shigella, and Yersinia spp).
- Delayed lactose fermenter (DLF) (e.g., Morganella, Providencia, Serratia, Edwardsiella, Erwinia, Hafnia).

Ability to grow on a large number of selective and differential media:


- Eosin-Methylene blue (EMB) agar: contains bile salt and dyes eosin and methylene blue, inhibit gram-positive bacteria.
- Hektoen Enteric agar(HE): contains high concentration of bile salt and dyes bromothymol blue and acid fuchsin.
- Xylose Lysine Deoxycholate (XLD) agar contains: sodium desoxycholate inhibits the growth of gram positive bacteria.
- Most have similar colonial morphology in blood agar plate.
 - moist, smooth, gray colonies and some strains are beta hemolytic. 1/2/2018

- *One of the most predominant intestinal flora, causes wide range of infections including: UTI, gastrointestinal infection, meningitis, wound infection and bacteremia.
- **Ferments lactose.
- Have characteristic metallic sheen on EMB.
- Positive in indole and methyl red tests
- Negative in Voges-Proskauer and Citrate tests
- Does NOT produce H_2S
- Usually motile.
- IMViC test: + + -
- TSI test: A/A/ -

- Usually found in intestinal tract and frequent cause of nosocomial pneumonia.
- Ferments lactose.
- Possess a polysaccharide capsule makes the colonies mucoid and moist.
- Negative in indole and methyl red tests
- Positive in Voges-Proskauer and Citrate tests
- Does NOT produce H_2S
- Non motile.
- IMViC test: - + +
- TSI test: A/A/ -



- The most clinically important species are: *E. cloacae* and *E. aerogenes*
- Isolated from wounds, urine, blood and CSF
- Ferments lactose. (Colonies resemble Klebsiella)
- Motile (differ from Klebsiella)
- Negative in indole and methyl red tests
- Positive in Voges-Proskauer and Citrate tests
- Urease test positive
- IMViC test: - + +
- TSI test: A/A/ -

<u>Serratia marcescens</u>


- Causes nosocomial UTI, and respiratory tract infections.
- Ferments lactose slowly.
- Motile
- Produce characteristic reddish-pink color on nutrient agar when cultured on room temp.

S. marscens on nutrient agar \rightarrow

- The most clinically important species are: *P. mirabilis* and *P. vulgaris*
- Isolated from urine, wound, ear and bacteremic infections.
- Do not ferment lactose.
- Motile (produce swarming on non selective media).
- Negative in indole and Voges-Proskauer tests
- Positive in methyl red and Citrate tests
- Produce H_2S
- Urease test positive
- IMViC test: + +
- TSI test: Alk/A/ +

<u>Pseudomonas aeroginosa</u>

- Non -fermenter gram-negative bacilli.
- Strict aerobes (acquire energy by oxidation not by fermentation)
- Oxidase-positive.
- Some Pseudomonads are motile by means of polar flagella.
- produces a characteristic fruity or sweety grape juice-like aroma.

Oxidase test

-Commonly habitat soil and water and found in small numbers in human feces.

-Have the ability to grow in lower nutrient environment, and have the ability to grow in disinfectant, so they persist in hospital environment.

- It is especially dangerous to the debilitated or compromised patient (burn and cystic fibrosis), it cause a nosocomial UTIs, wound infections, pneumonia, and septicemia.

- Produce two characteristic pigments, diffused in agar:
- Yere Pyocyanin: color the pus in wound (blue)
- Pyoviridin (fluorescein): fluoresces under UV light (yellow green), help in early diagnosis of skin infection.

pyocyanin

pyoviridin

Laboratory diagnosis:

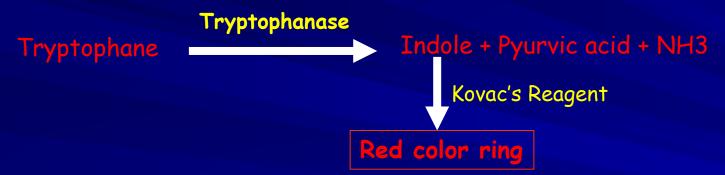
- Specimen: site of origin must be considered
- Gram-stain: not of value
- Culture: blood agar and a selective-differential medium such as MacConkey's agar
- Lactose-fermenter: pink colonies
- Non lactose fermenter: colorless colonies.
- For stool: highly selective media such as Hekton- enteric, SS agar is used along with Mac. 17

Laboratory diagnosis:

- Biochemical tests:
- IMViC test
- TSI tests
- API test
- Urease test
- Oxidase test

Serological test

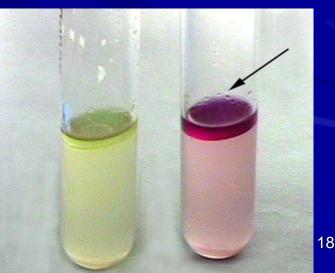
IMVIC Test

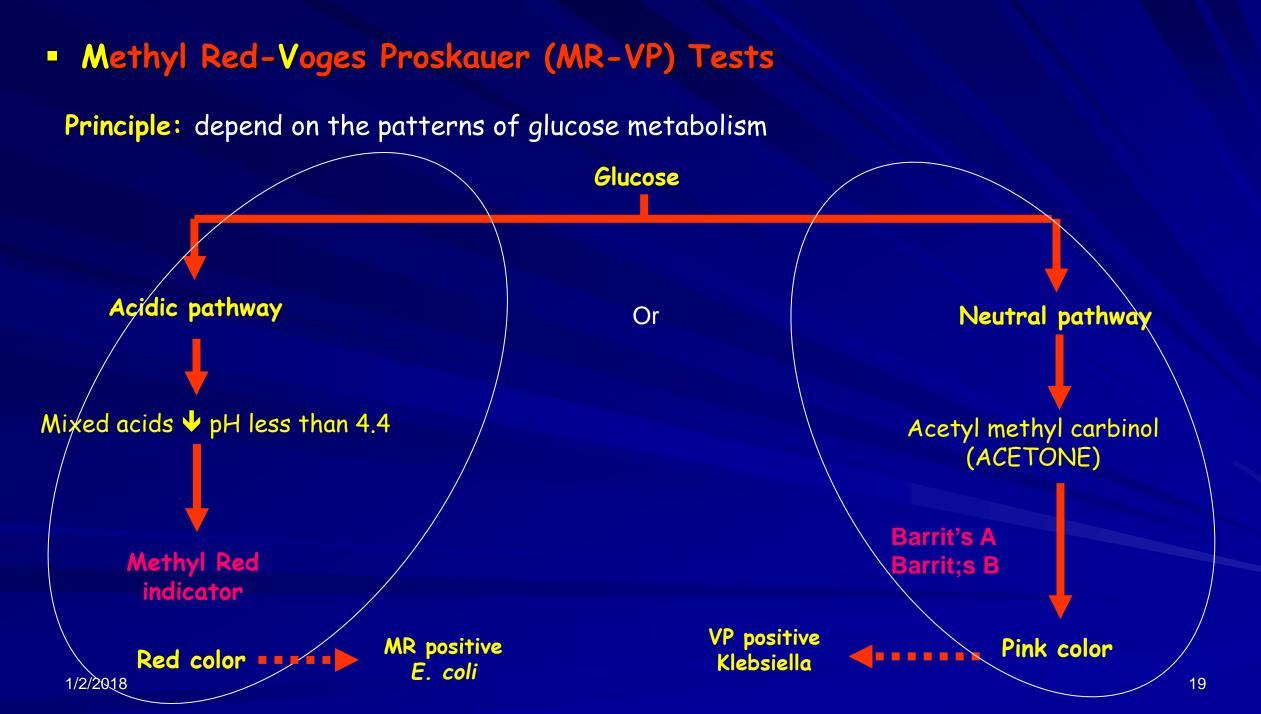

Indole, Methyl red, Voges-ProsKauer, Citrate tests

Indole test:

Principle

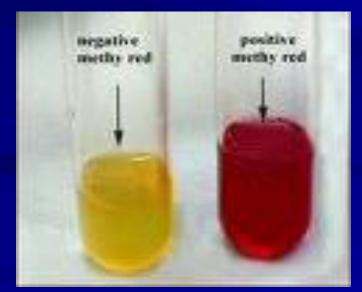
 Certain microorganisms can metabolize tryptophan by tryptophanase to pyruvic acid, indole and ammonia.

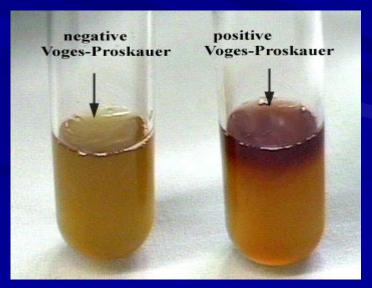

The presence of indole is detected by addition of Kovac's reagent.



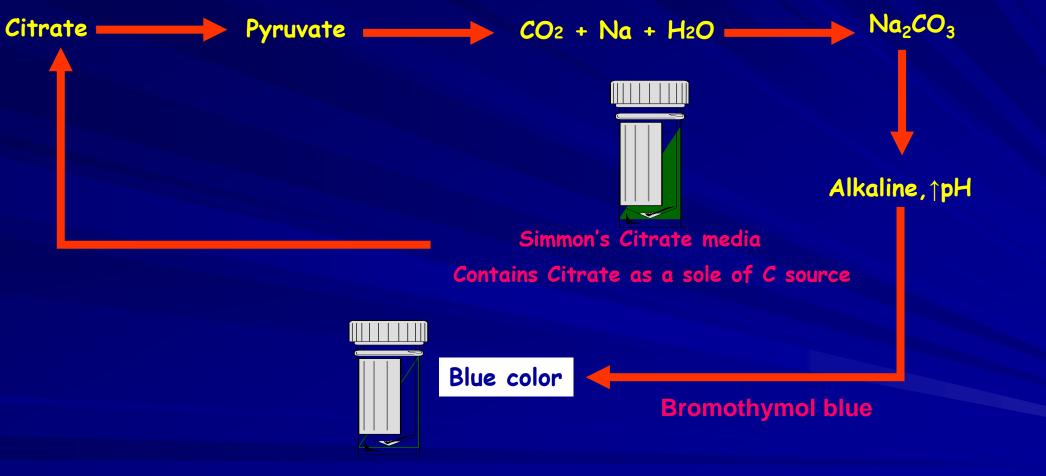
Negative Positive Klebsiella E. coli

Method:

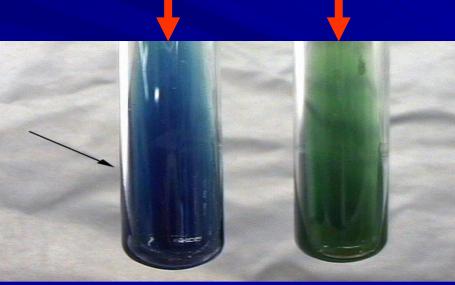

- Inoculate tryptone water with the tested microorganism, Incubate at 37°C for 24 hours
- After incubation interval, add 1 ml Kovac's reagent , shake the tube gently and read immediately 1/2/2018


- Methods:
- Inoculate the tested organism into tubes of MRVP broth, incubate the tubes at 37°C for 24-48 hours
- AFTER INCUBATION:

For methyl red: Add 6-8 drops of methyl red reagent.
For Voges-Proskauer: Add 6 drops of Barritt's A (α-naphthol), and 2 drops of Barritt's B (40% KOH), mix
Let, undisturbed, for at least 1 hour, then note color change.


Methyl Red test

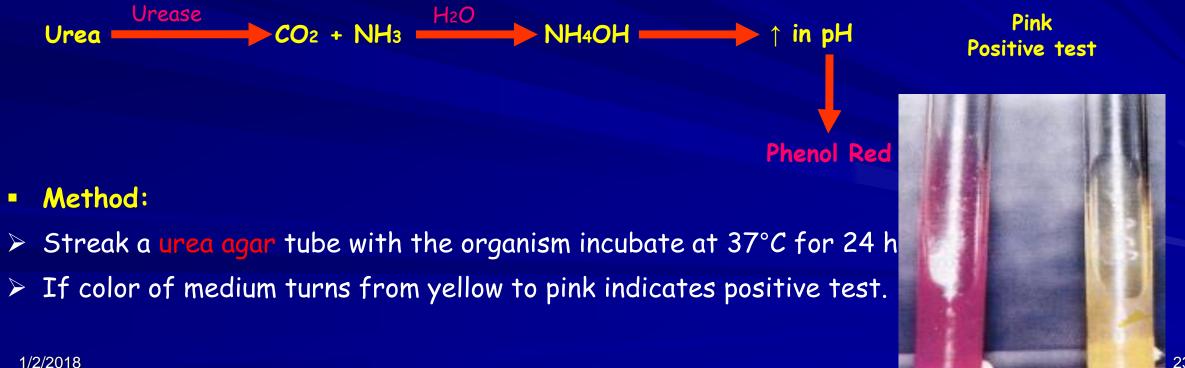
Voges-Proskauer test


Citrate Utilization Test

Principle: citrate utilized by bacteria produces citrase enzyme.

Method:

Streak a Simmon's citrate agar slant with the organism and incubate at 37°C for 24 hours. Growth on the medium is accompanied by a rise in pH to change the medium (containing bromothymol blue indicator) from its initial green color to deep blue.



Citrate utilization test

Urease Test

Principle:

- Urea agar contains urea and phenol red, Urease is an enzyme that catalyzes the conversion of urea to CO2 and NH3
- In solution reacts with CO2 to produce ammonium hydroxide, a strong base which \uparrow pH of the medium.
- \uparrow in the pH causes phenol red to turn a deep pink.

Triple Sugar Iron (TSI) Agar

TSI contains:

- Three different types of sugars
 - Glucose, Lactose, Sucrose
 - Phenol red (acidic: Yellow)
- Principle:
 - To determine the ability of an organism to utilize a specific carbohydrate incorporated into a basal growth medium, with or without the production of gas, along with the determination of possible hydrogen sulphide production.
- Method:
 - Inoculate TSI medium with an organism by inoculating needle by stabbing the butt and streaking the slant incubate at 37°C for 24 hours.

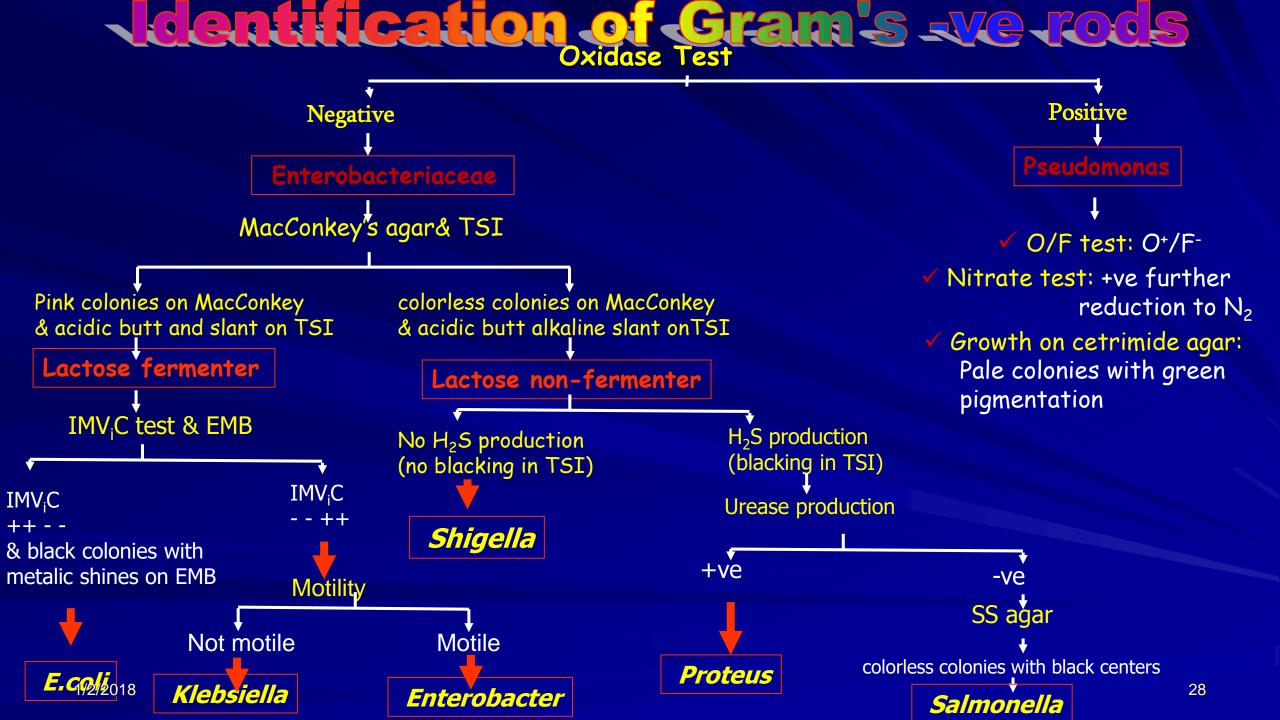
H₂S Production

Principle:

- Bacteria use the enzyme cysteine disulfurase to hydrolyze the amino acid cysteine, forming hydrogen sulfide as end product.
 cysteine disulfurase
- Cysteine ------> NH3 +pyruvic acid + H2S
- $H_2S + FeSO_4 \longrightarrow FeS + H_2SO_4$

Result

Reaction on TSI			Example	
Slant color	Butt color	H ₂ S	Result	
Red	Red	Negative	Alk/Alk/- (No action on sugars)	Non fermenter e.g. Pseudomonas
Red	yellow	Negative	Alk/A/- (Glucose fermented without H ₂ S)	LNF e.g. <i>Shigella</i>
Red	yellow	Positive black in butt	Alk/A/+ (Glucose fermented with H ₂ S)	LNF e.g. Salmonella & Proteus
Yellow	Yellow	Negative	A/A/- (three sugars are fermented)	LF e.g. E. coli, Klebsiella, Enterobacter


1/2/2018

Summary of morphology, cultural characteristics, and biochemical reactions of *Enterobacteriaceae*

	Gram stain	Oxidase	Nitrate reductase	O/F	Mac	SS	EMB
E. coli	-ve rod	-ve	+ve	O+/F+	LF	LF	Metallic sheen
Citrobacter	-ve rods	-ve	+ve	O+/F+	LF	LF	Dark
Klebsiella	-ve rods	-ve	+ve	O+/F+	LF	LF	Dark
Enterobacter	-ve rods	-ve	+ve	O+/F+	LF	LF	Dark
Salmonella	-ve rods	-ve	+ve	O+/F+	NLF	NLF/H ₂ S	Colorless
Shigella	-ve rods	-ve	+ve	O+/F+	NLF	NLF	Colorless
Proteus	-ve rods	-ve	+ve	O+/F+	NLF	NLF/H2S	Colorless
1/2/2018							26

Summary of morphology, cultural characteristics, and biochemical reactions of *Enterobacteriaceae*

	TSI	Indole	MR	VP	Citrate	Urease	Motility
E. coli	A/A/-	+ve	+ve	-ve	-ve	-ve	Motile
Citrobacter freundii	A/A/-	+ve	+ve	-ve	+ve	-ve	Motile
Klebsiella pneumoniae	A/A/-	-ve	-ve	+ve	+ve	+ve	Non motile
Enterobacter cloacae	A/A/-	-ve	-ve	+ve	+ve	+ve	Motile
Salmonella typhi	Alk/A/+	-ve	+ve	-ve	+ve	-ve	Motile
Shigella boydii	Alk/A/-	-ve	+ve	-ve	-ve	-ve	Non motile
Proteus mirabilis	Alk/A/+	-ve	+ve	-ve	+ve	+ve	Motile
1/2/2018							Swaryying

THANK YOU FOR ATTENTION

1/2/2018